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PREFACE

During its development testing, a system may undergo modification
to remedy design weaknesses which the tests reveal. The changes are
made to improve the reliability of the system, and if such improvement

occurs, we say that reliability growth is taking place.

This RAND Memorandum derives statistical methods for estimating
reliability under growth assumptions which merely wsequire that changes
made to the system which is being tested do not make it worse. The
methods differ from previous methods, which either ignore growth or
assume that growth is taking place in an assigned functional manner.

While this Memorandum is addressed primarily to statisticians,
it should also be of interest to test engineers and managers concerned
with assessing a system's reliability. The investigation was under-
taken as a part of the Apollo Contingency Planning Stud§ which RAND
is conducting for Headquarters, NASA, under Contract NASr-21(09). One
of the authors, Richard E. Barlow, is a consultant to The RAND

Corporation.
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SUMMARY
\%m{b

This study examines the problem of estimating the reliability of
a system that is undergoing development testing. 1In such a program,
changes are made to the system from time to time in order to increase
its reliability. This study assumes that these chénges are at least
not deleterious, and, unlike some previous work in this area, it does
not assume that system modifications cause reliability growth according
to a prescribed functional form. The method described herein does,
however, require that each failure be classified as inherent or re-
flecting a correctable cause.

The study proceeds on the supposition that the test program is
conducted in K stages, with similar items being tested within each
stage. For each stage, the number of inherent failures, of assignable
cause failures, and of successes is recorded. It is supposed that the
probability of an inherent failure, 9, remains the same throughout
the test program and that the probability of an assignable cause
failure in the i-th stage, q > does not increase from stage to stage
of testing. This Memorandum obtains maximum likelihood estimates of
q, and of the qi's subject to the condition that they be non-increasing,
and also obtains a conservative lower confidence interval for Tys the
reliability of the system in its final configuration of the test progra

Numerical examples to illustrate these methods are given.



-vii-

CONTENTS
PREFACE . i.ccevecesaceacaossnsscsioocosancsacescsacscacosssnsssessas iii
SUMMARY .:.eccccecoeceacasoosscannsccsassassnscnaonososnosscessassacnsss v
Section

I. INTRODUCTION ...ccccceenversssoscacscnnnsoosncsasacsaaassas .. 1
II. A TRINOMIAL MODEL FOR RELIABILITY GROWTH ........c00cceaee 3

III. THE LIKELTHOOD FUNCTION AND THE MAXIMUM
LIKELTHOOD ESTIMATES ...ccccceecsccoccoconancssansans 5
IV. AN EXAMPLE ........vveecenonnccacoosansencsscsasosanasnsnans 7

V. A CONSERVATIVE LOWER CONFIDENCE INTERVAL
FOR SYSTEM RELIABILITY ......ccvoevcenvccecccccsas .e.. 10

VI. MINIMUM NUMBER OF TESTS TO ACHIEVE SPECIFIED RELIABILITY . 13
VII. BINOMIAL VS. TRINOMIAL MODELS ......ccceveeeccnccancnancnss 15
VIII. A TREND TEST FOR RELIABILITY GROWTH ........c.cccvcuunannns 16

REFERENCES ....ccceveeeececseacssncsosccosannosoanassasacssacasnoans 17




I. INTRODUCTION

It is common practice,during the development of a system, to make
engineering changes as the program develops. These changes are gen-
erally made in order to correct design deficiencies and, thereby, to
increase reliability. This elimination of design weaknes;es is what
we mean by reliability growth.

The concept of reliability growth has been discussed by several
authors. We mention some studies with which we are familiar.

Lloyd and Lipow in Chapter 11 of their book [1] give a model in
which a system has only one failure mode; if the system operates suc-
cessfully at a trial, no redesign action is taken prior to the next
trial. If it fails at a trial, the designers attempt a modification
which has a given probability of being successful. This model leads

to an exponential growth model of the form.

e-C(n—l)

b

(1D Rn =1-A

in which Rh is the reliability of the system at the n-th trial and A
and C are parameters to be estimated. Lloyd and Lipow also consider

a situation in which a test program is conducted in N stages, each
stage consisting of a certain number of trials of the item under test.
All tests in a given stage of testing involve similar items. The re-
sults of each stage of testing are used to improve the item for fur-
ther testing in the next stage. They impose on the data a reliability

growth function of the form

(2) R =R, - a/k,




where Rk is the reliability during the k-th stage of testing, and R,
(the "ultimate" reliability) and @ are parameters. Lloyd and Lipow
give maximum likelihood and least squares estimates of R_and @ and a
lower confidence limit for Rk. Finally, they suggest some other forms
that reliability growth models might take.

Wolman‘[z] considers a model in which a distinction is made
between inherent (random) failures and assignable cause failures. He
supposes that the number of design weaknesses (the source of assign-
able cause failures) is known and that they all have the same prob-
ability of causing a failure on a particular trial. Further, once a
design weakness is observed, it is eliminated and will never again
cause a system failure. Wolman is interested in calculating quan-
tities such as the probability of eliminating all design weaknesses
in n trials (assuming as known the probabilities of the two kinds of
failure) -- not in estimating the parameters of his model. That is,
his is a probabilistic model. (A statistical model is discussed below.)

Madansky and Peisakoff [3] have examined some data from Thor and Atlas
Missile flights. They, too, distinguished between inherent and assign-
able cause failures and batched together data from comparable test
units, but made no explicit use of any statistical model.

H. K. Weiss [4] has considered reliability growth as a process
by which the mean time to failure of a system with exponential failure
distribution is increased by removing failure causes during a develop-
ment program.

Two related papers which have appeared recently are by Bresenham [5]

and Corcoran, Weingarten, and Zehna [6].




II. A TRINOMIAL MODEL FOR RELIABILITY GROWTH

We propose the following model for a development program experi-
encing reliability growth. The test program is conducted in K stages.
At each stage of experimentation, tests are run on similar items. The
results of each stage of testing are used to improve the item for
further testing in the next stage. We record for the i-th stage the
number, a, of inherent failures,* the number, bi’ of assignable cause
failures,** and the number, oo of successes. The probability of an
inherent failure, q,> is assumed to be constant and not to change from
stage to stage of testing. The probability of an assignable cause
failure in the i-th stage is q- Each trial results in exactly one of
the outcomes: success, inherent failure, or assignable cause failure.
We assume that the sequence of the qi's is non-increasing. This means

that changes made between stages of testing are not harmful to the

system. The probability of success or the reliability in the i-th stage

is, of course, r, =1 - q, - 9;- By "reliability growth' we mean that
the ri's increase from stage to stage. This is accomplished by a
decrease in the qi's which must be brought about by appropriate
engineering modifications of the system. We will obtain maximum like-
lihood estimates.of q,> and the qi’s under the restriction that they
are non-increasing, and a conservative lower confidence interval for

r,, the reliability of the system in its final configuration of the

K’

test program.

%*
Failures that reflect the state-of-the-art and whose elimination
would require an advancement thereof.

*k
Those which can be corrected by equipment or operational modi-
fications.



It is worth remarking that the number of stages, K, and the number
of trials, a + bi + s in the i-th stage may be fixed in advance or
they may be random variables. Whichever the case, it will not alter
the likelihood function corresponding to the experimental outcome on
which our estimation procedure is based.

Let us compare our model with some of the others mentioned in

the "Introduction."

It shares with the work of Weiss, Madansky and
Peisakoff, and Wolman the property that two types of failures (inherent
and assignable cause) are distinguished.* Unlike Wolman, we do not
suppose in our model that the number of assignable cause failures is
known in advance or that each has the same probability of causing a
failure. Like Lloyd and Lipow (in their model leading to our Eq. (2))
and Madansky and Peisakoff, we consider that test data are batched
according to stages of sampling of homogeneous test items. Unlike
Lloyd and Lipow, (i.e., Eq. (2)) we do not impose an arbitrary growth

pattern on our test results.

*
We will demonstrate the importance of this feature later by
constructing a situation where, without this distinction, a nonsensical
result obtains.




I11. THE LIKELIHOOD FUNCTION AND THE MAXTMUM
LIKELIHOOD ESTIMATES

The likelihood function corresponding to a, inherent failures,
bi assignable cause failures, and ¢, successes in stage i, i =1, ..., K

is

L(al ’bl ’cls' .. ’aK’bK’CK; q0’q19' o ’qK)=

(3)
K (a, +b +c)! i by 1-q - y i
| % 9 L

; a,!b. !c,!
i=1 i 174

Upon differentiating the log likelihood with respect to 9, and 9 and
setting the derivatives equal to zero, we find for the maximum like-

lihood estimates

K K
(&) ﬁo=§;ai/zl:_ (ai+bi+ci) s

and
(5) qiz(l-qo) bi/(bi+ci) b 1=1"”’K‘

Equations (5) are the maximum likelihood estimates of the qi's
in general. We want to obtain maximum likelihood estimates of the
qi's subject to the condition 9 2 q2 2 .., 2 qK.* Adapting a result
of Ayer, et al. [7] will give us these. Let il’ aZ""’ aK denote

the maximum likelihood estimates of 955 995 v Gy subject to the

*
This corresponds to our assumption that reliability does not

decrease from stage to stage of testing.



condition q; 2 q, = ... = qp. If 211 > az 2 ... 2 &K, then ai = ai,
i=1, ..., K. If aj < §j+1 for some j (j=1, ..., K-1), then combine
the observations in the j-th and (j + 1l)-st stages and compute the
maximum likelihood estimates of the qi's by Eq. (5) for the K-1 stages
thus formed. This procedure is continued until the estimates of the
qi's form a non-increasing sequence. These estimates are the maximum

likelihood estimates of the qi's subject to 9, 2 q, 2 ,.. 2 We

A+
will illustrate this procedure in Sec. IV, but first we will justify

its validity.

Fix q, and rewrite the likelihood Eq. (3) as

b,
Ta, Z(b,+c,) (a.+b,+c,)! /q. . q
i i i i i i
(6) L= 9 (1-qo) II ai!bifc.f II\&-qO

1

Letting P, = q%//(l-qo) so that Py - P, 2 .,.. 2 Py > noting that

P; €[0,1] since 9 €lo, l-qo], and that the maximization of L with
respect to the q does not involve the term in square brackets in

Eq. (6), we find that we are in precisely the situation discussed by
Ayer, et al. [7]. They find the maximum likelihood estimates for the

pi's subject to the constraint Py 2 P, Z...2p Thus, their maximum

K
likelihood estimate of P is (1-qo) times our maximum likelihood
estimate of q- Maximizing on q, we obtain the maximum likelihood

estimate, Eq. (4), for q, and are led to the maximum likelihood esti-

mates for the qi's given in the preceding paragraph.




IV. AN EXAMPLE

Suppose that a development testing program yielded the results

shown in Table 1.

Table 1
IAssignable
Stage nherent Cause Successes Trials
[Failures b,
Failures i
i a b. c, a, +b. +c. |b. + ¢,
i i i i i i i i
1 0 1 0 1 1
2 0 1 0 1 1
3 0 1 0 1 1
4 1 1 1 3 1/2
5 0 1 4 5 1/5
6 0 1 0 1 1
7 0 1 0 1 1
8 0 1 3 4 1/4
9 9 1 27 37 1/28
Totals 10 9 35 54 --

Each stage of sampling, except the last, was terminmated when an
assignable cause failure occurred. A re-design effort was undertaken
to eliminate the cause of failure, so that the test units in the suc-
ceeding stage were different from the earlier units but homogeneous
in any given stage. We remark that this is the defining property of
a stage, namely the homogeneity of all test units therein.

Note first that ao = 10/54 = .1852. To construct the maximum
likelihood estimates for the qi's subject to the condition that they

be non-increasing, we must combine stages where there is a reversal




of non-increasingness of the ratios bi/(bi + ci) until we get a non-

*
increasing sequence.

Table 2 indicates how this grouping is done.

Table 2
b, R
i First Second
i b, c. (bi + Ci) Combination | Combination
1 1 0 1 1 1
2 1 0 1 1 1
3 1 0 1 1 1
4 1 1 1/2 1/2 1/2
5 1 4 1/5 1/3
6 1 0 1 3/7
7 1 0 1 1
8 1 3 1/4 1/4 1/4
9 1 27 1/28 1/28 1/28
Observe that
b5 B b6 ,
b5 +C5 b6 +c6

so that we combined stages 5 and 6. There is yet a reversal between

the ratios for the new fifth stage and the new sixth stage (the original
seventh stage) so we next combine those stages. We now have eliminated
all reversals and obtain as maximum likelihood estimates ai of the qi's

subject to 9 2 9, 2 ,.., 2 A >

* ~
It suffices to look at these ratios since the estimate of q,
does not depend on the grouping of the data into stages.
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q =9, = qy = 22/27 = .8148,

11/27 = . 4074,

A5 = qg = gy = 22/63 = .3492,

11/54 = .2037, and

£
[

11/378 = .0291 .

Thus the maximum likelihood estimate for Tys the reliability of

the system in its final test configuration, is
Iy = 1 - q, - 49 = .7857 .

If no assumption of reliability growth were made -- that is, if all
test units were (incorrectly) supposed to be homogeneous and if no
distinction were made between inherent and assignable cause failures --

the estimate of reliability would be

Iy = 2: ci//§:(ai + bi + ci) = 35/54 = 6481 .
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V. A CONSERVATIVE LOWER CONFIDENCE INTERVAL
FOR SYSTEM RELIABILITY

In this section and the next we do not need the notion of a stage
of testing, although we could, without violating our definition, con-
sider each observation as a separate stage. Further, it is not neces-
sary to distinguish between inherent and assignable cause failures.

We consider, as before, a model in which the reliability (prob-
ability of success) does not decrease from trial to trial; that is
r, < r, < ... S ro- We seek a 100(1l-@) per cent conservative lower
confidence interval* onr_, the reliability of the system at the n-th

trial. To this end, we cite a theorem of W. Hoeffding [8].

THEOREM: 1If X denotes the number of successes in n inde-

pendent trials where the i-th trial has probability r, of
n -
success,E[X] = Z; r, = nr, and ¢ is an integer, then

C

(i) osplxscls ) (z)(E)k (1-9*% if 0 <c <nE-1,
k=0

(i) 0 <1 - Q(n-c-1, 1-T) S P(X € c¢) < Q(c,r) <1

if nr-1 < ¢ < nr ,

C
(1i1) ) (;) O - * <p(x€c) <1 ifnFSc=n,

o0

—~
0
g}

A
n

c-S
’- max 2: (n;S) ak (l_a)n-S-k ,
0<S<c¢ k=0

QO
[]

(nr-8)/(n-8)

*
A 100(1l-a) per cent conservative (exact) lower confidence interval

(a(X),») for a parameter €, given the sample information X, is such that
pl6>a(x)] 2 (=) 1-a.
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All bounds are attained. The upper bound for 0 < ¢ < nr-1
and the lower bound for nr < ¢ < n are attained only if

r1=r2=...=rn=r.

Denote the lower bound given by the theorem by b(c;r). Observe
that in each interval for c, b(c;r) is non-increasing in r and non-
decreasing in c.

Since we seek a 100(1-a) per cent conservative lower confidence
interval, we set b(c;r) = l-a (except in case (i) where this is impos-

sible). This determines a function, c(;), satisfying
(7) bc(r); ) =1 - o .

Having observed X successes, and setting X = c(r), we solve Eq. (7)
obtaining r = ;o as solution.
Now note that the following events are equivalent:
(a) X < (1) ,
(b) X = e(r)) S c(n) ,
() ¢ 2 ;o .
Events (a) and (b) are the same by definition of c(;o), and events (b)
and (c) are equivalent by the observation following the statement of

Hoeffding's theorem. Thus,
Plr 2 r_[r] =P[x s (D[] 2 b(e57) =1 - 2.

Since r, < ... <r ,r_ 271, and thus P[r_ 271 |r]21 - 0.
1 n’ n n o

In using bound (ii) or (iii), one must compare nfo with ¢, the

observed number of successes.
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We remark finally that the above discussion is a modification
of the classical theory of confidence bounds discusséd by Lehmann
{9, pp. 78-80].

Example: In the development testing program cited in Sec. IV,
35 successes were recorded in 54 trials. Using binomial tables, we
find that .54 < ;o < .55 at the 95 per cent confidence level. (Bound
(iii) is in order here since ¢ = 35 2 nEo = 54(.54) = 29.16.) Hence
we are 95 per cent confident that Ty 2 .54. However, it is a con-
servative confidence statement as we noted earlier. It is, in fact
the same estimate we could obtain assuming no reliability growth;
i.e., I S I, = ... = ro-

Note that if one looks at only the results of stage 9, standard
methods yield for 27 successes in 37 trials a lower 95 per cent con-
fidence limit for the reliability in stage 9 of .58. This merely
shows that if enough data are available from the last stage, the
standard binomial approach may be preferred. Our method, however,

enables one to use the data from all stages.
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Vi. MINIMUM NUMBER OF TESTS TO ACHIEVE SPECIFIED RELIABILITY

As another application of Hoeffding's bounds, we can determine
the minimum number of tests necessary to establish a specified relia-
bility f*, assuming that the critical number c of successes and the
probability of a type I error, o, are fixed in advance.

*

- * -
Consider the problem of testing HO: T 27r versus le r<r.

- * %*
Note that r 2 r implies r 2 r under the assumption r =< r, <...S ros
but not conversely. The usual binomial test is to accept H0 if the

number of successes, X, exceeds c-1 and to reject otherwise. Now by

(i) of the Yoeffding bounds cited in Sec. V,

- *
i = < < <r; =
Plreject Hblnb] plx c|r1 cee r;r=r ]

c-1

* %* - *
SZ(E)(r)k(l-r)nk if ¢ <nr .
=0

Hence, if we determine n such that

¥ (Q) (Y (1-rHE = a
k=0
and n > c/r*, we will protect the probability of a type I error under
Ho. The minimum n satisfying these conditions will determine the
length of the test program.

Example: If o = .05, ¢ = 20, f* = .8, so that c/f* = 25, we find
that n = 29 suffices since

19
S (23) &) .28k = 090 ,
k=0




while
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VIII. A TREND TEST FOR RELIABILITY GROWTH

In the foregoing we have assumed that the probability of an
assignable cause failure does not increase during the development
testing program. We feel that the validity of this hypothesis would
be determined on the basis of engineering knowledge. However, we pro-
pose a test for reliability growth; that is, for non-increasingness of
the qi's.

Mann [10] has given two tests against downward trend and provided

tables for their use. Specifically, we are given data X X

1> Xps ooes X

in that order. The null hypothesis is that the X's are randomly

arranged. The alternative hypothesis is that Xi has continuous cumula-
tive distribution function Fi’ with Fi(t) < Fi+k(t) for every i, every
t, and every k > 0; that is, the sequence of the Xi's is stochastically

decreasing. To test against upward trend, merely test -X -X

1’
against downward trend.

Suppose each stage of testing is terminated when an assignable
cause failure occurs. We identify Xi with the number of trials since
the last assignable cause failure. The Xi's should increase if relia-
bility growth is taking place. Note, however, that here we are dealing
with a discrete random variable so that the c.d.f. will not be con-
tinuous. We can circumvent this problem by adding a uniform [o,1]
random variable to each of the random variables suggested above without

changing the appropriate probabilities under the null hypothesis. We

can then apply one of the Mann procedures to this new random variable.

23 e n
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VII. BINOMIAL VS. TRINOMIAL MODELS

In this section we construct an example to show that it would not
suffice to consider a binomial model for reliability growth using the
maximum likelihood approach of Sec. III. We do this by exhibiting
an experimental outcome in which the maximum likelihood estimate for
r under a binomial model is nonsensical while the correeponding esti-
mate under our trinomial model is eminently reasonable.

Suppose we consider a binomial model in which we make no distinc-
tion between inherent and assignable cause failures. Denote the prob-
ability of success at trial i by r, and assume as before that
ry =< r, =.,.. = ro- The unrestricted maximum likelihood estimate of
r, is 0 or 1, according as failure or success is observed at trial {i.
To obtain the maximum likelihood estimates of the ri's under the re-
striction r < r, ... s r , one invokes the procedures of Ayer,
et al. (7], which we used in Sec. III. However, if the n-th trial
results in a success, the maximum likelihood estimate of r, will be
unity -- independent of what transpired on earlier trials. 1In
particular, this would be the maximum likelihood estimate of r even
if all trials prior to the n-th had been failures. On the other hand,
if the n-th trial were a success, our trinomial model would give as

the maximum likelihood estimate for r, the proportion of successes

observed in the n trials.
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